Positivity relations and localic suplattices

Francesco Ciraulo
(j.w.w. Steve Vickers - University of Birmingham)

CORCON, 24-27 March 2014, Genova
Subject: topological closure and related notions.

Framework: constructive point-free Topology
(Formal Topology / the theory of Locales).

Aim: to uncover the links between
- positivity relations (in Formal Topology) and
- lower powerlocales / localic suplattices (in Locale theory).

[Here we do not bother much about the issue of predicativity VS impredicativity.]
Overt weakly closed sublocales

Each overt weakly closed sublocale of \(L \) is generated as follows:

1. fix a suplattice \(a \)
2. impose the EXTRA condition \(a \leq \bigvee \{ \phi(x) \mid x \in \{a\} \} \) for every \(a \in L \).

IDEA: \(\phi \) becomes a "positivity predicate".

\(a = \) complete join-semilattice
\(b = \) join-preserving map

CLASSICALLY: you declare \(a = 0 \) whenever \(\phi(a) \) is false.

This is just a closed sublocale.
Overt weakly closed sublocales

Each **overt weakly closed** sublocale of L is **generated** as follows:

1. fix a suplattice\(^a\) homomorphism\(^b\) $\varphi : L \to \Omega = Pow(1) = \text{“truth values”}$;
2. impose the EXTRA condition $a \leq \bigvee \{x \in \{a\} \mid \varphi(x)\}$ for every $a \in L$.

IDEA: φ becomes a **“positivity predicate”**.

\(^a\) = complete join-semilattice
\(^b\) = join-preserving map

CLASSICALLY: you declare $a = 0$ whenever $\varphi(a)$ is false.
This is just a **closed** sublocale.
Overt weakly closed sublocales are equivalent to...

Overt weakly closed sublocales of $L \cong \text{SupLat}(L, \Omega) \cong$ points of the lower powerlocale \mathcal{PL}
\cong splitting subsets of L.

Lower powerlocale: localic version of the *lower Vietoris hyperspace*.\(^1\)

Splitting subsets: $Z \subseteq L$ s.t.

\[
\frac{a \leq \bigvee X \quad a \in Z}{X \nsubseteq Z} \quad (\text{for every } X \subseteq L).\(^2\)
\]

\(^1\) = topology on the closed sets with $\{\{C \text{ closed} \mid C \nsubseteq A\} \mid A \text{ open}\}$ as a subbase.

\(^2\) Here $X \nsubseteq Z$ means “$X \cap Z$ is inhabited”.
Overt weakly closed sublocales are equivalent to...

Overt weakly closed sublocales of $L \simeq \text{SupLat}(L, \Omega)$

points of the lower powerlocale $\mathcal{P}L$

splitting subsets of L.

Lower powerlocale: localic version of the *lower Vietoris hyperspace*.1

Splitting subsets: $Z \subseteq L$ s.t. $a \leq \bigvee X \Rightarrow a \in Z$ (for every $X \subseteq L$).2

These appear in Formal Topology as formal closed subset w.r.t. a suitable positivity relation.

1 = topology on the closed sets with $\{\{C \text{ closed} \mid C \models A\} \mid A \text{ open}\}$ as a subbase.

2 Here $X \models Z$ means “$X \cap Z$ is inhabited”.

Francesco Ciraulo (Padua) Positivity relations and localic suplattices CORCON - Genova, 24-27 March 2014
Formal Closed subsets and Positivity relations
in Formal Topology

Let L be “presented” via a **base** $S \subseteq L$ and a **cover relation** $\triangleleft \subseteq S \times \text{Pow}(S)$.

- **Impredicatively:** always possible - take $S = L$ and $a \triangleleft U$ iff $a \leq \bigvee U$
- **Predicatively:** this is the only way to deal with locales!
Formal Closed subsets and Positivity relations in Formal Topology

Let L be “presented” via a **base** $S \subseteq L$ and a **cover relation** $\triangleleft \subseteq S \times \mathcal{P}(S)$.

- Impredicatively: always possible - take $S = L$ and $a \triangleleft U$ iff $a \leq \bigvee U$
- Predicatively: this is the only way to deal with locales!

Positivity relation $\ltimes \subseteq S \times \mathcal{P}(S)$ (compatible with a given cover relation)

\[
\begin{align*}
\frac{a \ltimes U}{a \in U} & \quad + \quad \frac{a \ltimes U \quad U \subseteq V}{a \ltimes V} & \quad + \quad \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} & \quad + \quad \frac{a \triangleleft U \quad a \ltimes V}{(\exists u \in U)(u \ltimes V)}
\end{align*}
\]

\[\{x \in S \mid x \ltimes U\} \leftarrow \text{formal closed subset} \text{ (indexed by } U \subseteq S).\]

It’s a splitting subset.
Positivity relations and splitting subsets

\[\text{Split}(L) = \{\text{splitting subsets of } L\} \text{ is a suplattice (w.r.t. union).} \]

[This doesn’t mean that join of closed is closed!]
Positivity relations and splitting subsets

\[\text{Split}(L) = \{\text{splitting subsets of } L\} \text{ is a suplattice (w.r.t. union).} \]

[This doesn’t mean that join of closed is closed!]

Positivity relation on \(L \) = sub-suplattice of \(\text{Split}(L) \)

\[\text{FormalClosed}(\times) \overset{\text{def}}{=} \{\text{formal closed subsets w.r.t. } \times\} \text{ is a sub-suplattice of } \text{Split}(L). \]
Positivity relations and splitting subsets

Split(L) = \{splitting subsets of L\} is a suplattice (w.r.t. union).

[This doesn’t mean that join of closed is closed!]

Positivity relation on $L = \text{sub-suplattice of } \text{Split}(L)$

$\text{FormalClosed}(\ltimes) \overset{\text{def}}{=} \{\text{formal closed subsets w.r.t. } \ltimes\}$ is a sub-suplattice of $\text{Split}(L)$.

Vice versa: if $M \hookrightarrow \text{Split}(L)$, then

$$a \ltimes_M U \overset{\text{def}}{\iff} (\exists X \in M)(a \in X \subseteq U)$$

is a positivity relation on L s.t. $\text{FormalClosed}(\ltimes_M) = M$.
Positivity relations and splitting subsets

\(\text{Split}(L) = \{ \text{splitting subsets of } L \} \) is a \textbf{suplattice} (w.r.t. union).

[This doesn’t mean that join of closed is closed!]

Positivity relation on \(L = \text{sub-suplattice of } \text{Split}(L) \)

\[\text{FormalClosed}(\ltimes) \overset{\text{def}}{=} \{ \text{formal closed subsets w.r.t. } \ltimes \} \text{ is a sub-suplattice of } \text{Split}(L). \]

Vice versa: if \(M \hookrightarrow \text{Split}(L) \), then

\[a \ltimes_M U \overset{\text{def}}{\iff} (\exists X \in M)(a \in X \subseteq U) \]

is a positivity relation on \(L \) s.t. \(\text{FormalClosed}(\ltimes_M) = M \).

This works for any presentation \((S, \ltimes)\) of \(L \), that is,

the suplattice \(\text{FormalClosed}(\ltimes) \) is \textbf{independent} from the presentation of \(L \).
Positivity on a locale
in terms of suplattice homomorphisms

Positive relation on L \[\cong\] any sub-suplattice of $\text{Split}(L)$
\[\cong\] any sub-suplattice of $\text{SupLat}(L, \Omega)$.

[Because $\text{Split}(L) \cong \text{SupLat}(L, \Omega)$.]
Positivity on a locale
in terms of suplattice homomorphisms

Positivity relation on L \iff any sub-suplattice of $\text{Split}(L)$
\iff any sub-suplattice of $\text{SupLat}(L, \Omega)$.

[Because $\text{Split}(L) \cong \text{SupLat}(L, \Omega)$.

With classical logic. . .

$\text{SupLat}(L, \Omega) \cong \text{SupLat}(\Omega^{op}, L^{op}) \cong \text{SupLat}(\Omega, L^{op}) \cong L^{op}$

Therefore, a positivity relation X on L is

- any sub-suplattice $X \hookrightarrow L^{op}$
- any suplattice quotient $L \twoheadrightarrow Y$ (with $Y = X^{op}$)
- any suplattice of the form $\text{SupLat}(Y, \Omega)$ for some suplattice quotient $L \twoheadrightarrow Y$.
What is $\mathcal{P}L$, the lower powerlocale of L?

It’s underlying frame is the **free** frame generated by L qua suplattice.
What is $\mathcal{P}L$, the lower powerlocale of L?

It’s underlying frame is the **free** frame generated by L qua suplattice.

Corollary: $\text{Points}(\mathcal{P}L) \cong$ frame homomorphisms $\mathcal{P}L \to \Omega \cong \text{SupLat}(L, \Omega)$.
Positivity relations and the lower powerlocale

What is \(\mathcal{P}L \), the lower powerlocale of \(L \)?

It’s underlying frame is the free frame generated by \(L \) qua suplattice.

Corollary: Points(\(\mathcal{P}L \)) \(\cong \) frame homomorphisms \(\mathcal{P}L \to \Omega \cong \text{SupLat}(L, \Omega) \).

Therefore: a positivity relation on \(L \) \(\cong \) any sub-suplattice of \(\text{SupLat}(L, \Omega) \)
\(\cong \) any sub-suplattice of Points(\(\mathcal{P}L \))
(w.r.t. specialization order).
What is $\mathcal{P}L$, the lower powerlocale of L?

It’s underlying frame is the free frame generated by L qua suplattice.

Corollary: $\text{Points}(\mathcal{P}L) \cong \text{frame homomorphisms } \mathcal{P}L \to \Omega \cong \text{SupLat}(L, \Omega)$.

Therefore: a positivity relation on $L \cong$ any sub-suplattice of $\text{SupLat}(L, \Omega)$

\cong any sub-suplattice of $\text{Points}(\mathcal{P}L)$

(w.r.t. specialization order).

Question:

is a positivity relation a mere suplattice of points of $\mathcal{P}L$?

Or maybe it’s the points of a sublocale of $\mathcal{P}L$?
Localic suplattices

\(\mathcal{P} \) is (the functor part of) a monad on the category of locales.

A **localic suplattice** \(\overset{\text{def}}{=} \) an algebra \(\mathcal{P}X \to X \) for this monad.
Localic suplattices

\(\mathcal{P} \) is (the functor part of) a monad on the category of locales.

A **localic suplattice** \(\overset{\text{def}}{=} \) an algebra \(\mathcal{P}X \to X \) for this monad.

1. \(X \) localic suplattice \(\implies \) \(\text{Pt}(X) \) suplattice (w.r.t. specialization order);
2. \(X \) localic **sub**-suplattice of \(\mathcal{P}L \implies \text{Pt}(X) \) positivity relation on \(L \).

(CLASS)

Every positivity relation on \(L \) is of the form \(\text{Pt}(X) \) for some localic sub-suplattice \(X \) of \(\mathcal{P}L \).
Examples: positivity relations on a topological space X

For p a point let $\mathcal{N}p \overset{\text{def}}{=} \text{open neighbourhoods of } p$.

Then $a \times_X U \overset{\text{def}}{=} (\exists p \in X)(a \in \mathcal{N}p \subseteq U)$ is a positivity relation on X and $Formal\text{Closed}(\times_X) \cong \{\text{closed}^3 \text{ subsets of } X\}$

3Here “closed” means “contains its own adherent points” (constructively not the same thing as “is the complement of an open set”).
Examples: positivity relations on a topological space X

For p a point let $\mathcal{N}p \overset{\text{def}}{=} \text{open neighbourhoods of } p$.

Then $\overset{\text{def}}{\iff} (\exists p \in X)(a \in \mathcal{N}p \subseteq U)$ is a positivity relation on X and

$$\text{FormalClosed}(\ltimes_X) \cong \{\text{closed}^3 \text{ subsets of } X\}$$

More generally . . .

for every subspace $Y \subseteq X$,

$$\{\text{closed sets in the subspace } Y\}$$

 corresponds to a positivity relation on X.

3Here “closed” means “contains its own adherent points” (constructively not the same thing as “is the complement of an open set”).
Morphisms that respect positivity

Positive topology $\overset{\text{def}}{=} (S, \triangleleft, \asymp) \cong (L, \Phi)$
(a.k.a. Balanced formal topology)

where $\Phi \hookrightarrow \text{SupLat}(L, \Omega)$
Morphisms that respect positivity

Positive topology $\overset{\text{def}}{=} (S, \triangledown, \bowtie) \cong (L, \Phi)$

(a.k.a. Balanced formal topology)

where $\Phi \hookrightarrow \text{SupLat}(L, \Omega)$

A morphism $(L_1, \Phi_1) \rightarrow (L_2, \Phi_2)$ is...

- an arrow $L_1 \xrightarrow{f} L_2$ of locales (i.e. a homomorphism $L_2 \xrightarrow{f^{-}} L_1$ of frames)
- such that $L_1 \xrightarrow{\varphi} \Omega$ in $\Phi_1 \implies L_2 \xrightarrow{f^{-}} L_1 \xrightarrow{\varphi} \Omega$ in Φ_2

(the “inverse image” of a formal closed subset is a formal closed subset).
Morphisms that respect positivity

Positive topology \(\overset{\text{def}}{=} (S, \triangleleft, \triangleright) \cong (L, \Phi) \)
(a.k.a. Balanced formal topology)

\(\downarrow \text{impredicatively} \)

A morphism \((L_1, \Phi_1) \rightarrow (L_2, \Phi_2)\) is...

- an arrow \(L_1 \xrightarrow{f} L_2\) of locales (i.e. a homomorphism \(L_2 \xrightarrow{f^-} L_1\) of frames)
- such that \(L_1 \xrightarrow{\varphi} \Omega \text{ in } \Phi_1 \implies L_2 \xrightarrow{f^-} L_1 \xrightarrow{\varphi} \Omega \text{ in } \Phi_2\)

(the “inverse image” of a formal closed subset is a formal closed subset).

\[\text{SupLat}(L_1, \Omega) \xrightarrow{(___)\circ f^-} \text{SupLat}(L_2, \Omega) \]

\[\Phi_1 \overset{\downarrow}{\longrightarrow} \Phi_2 \]
The greatest positivity relation

Every locale L has a greatest positivity relation:

$\bowtie_{\text{max}} \cong \Phi_{\text{max}} \overset{\text{def}}{=} \text{SupLat}(L, \Omega) \cong \{\text{all overt weakly closed sublocales of } L\}$

[Actually, positivity relations on L form a SUPLATTICE, the suplattice of sub-suplattices of $\text{SupLat}(L, \Omega)$.]
The greatest positivity relation

Every locale L has a greatest positivity relation:

\[\ll_{\max} \cong \phi_{\max} \overset{\text{def}}{=} \text{SupLat}(L, \Omega) \cong \{ \text{all overt weakly closed sublocales of } L \} \]

[Actually, positivity relations on L form a SUPLATTICE, the suplattice of sub-suplattices of $\text{SupLat}(L, \Omega)$.]

Constructively . . .

if $L = (S, \triangleleft)$ is inductively generated, then \ll_{\max} is generated by co-induction.

(Martin-Löf & Sambin - Generating Positivity by Coinduction)

See also:
Embedding locales into locales-with-positivity

\(\text{Loc} = \) category of locales
\(\text{PLoc} = \) category of locales-with-positivity (and morphisms that respect positivity)
 (impredicative version of \(\text{PTop} \), category of positive topologies).
Embedding locales into locales-with-positivity

Loc = category of locales

PLoc = category of locales-with-positivity (and morphisms that respect positivity)

(impredicative version of **PTop**, category of positive topologies).

By definition of morphism that respect positivity:

an arrow \((L, \Phi) \rightarrow (L', \text{SupLat}(L', \Omega))\) in **PLoc**

is equivalent to

an arrow \(L \rightarrow L'\) in **Loc**.
Embedding locales into locales-with-positivity

\(\textbf{Loc} \) = category of locales

\(\textbf{PLoc} \) = category of locales-with-positivity (and morphisms that respect positivity)

(impredicative version of \(\textbf{PTop} \), category of positive topologies).

By definition of morphism that respect positivity:

an arrow \((L, \Phi) \rightarrow ((L', \textbf{SupLat}(L', \Omega))\) in \(\textbf{PLoc} \)

is equivalent to

an arrow \(L \rightarrow L'\) in \(\textbf{Loc} \).

\[
\begin{array}{ccc}
\textbf{Loc} & \xrightarrow{\mathcal{I}} & \textbf{PLoc} \\
\downarrow & & \downarrow \\
\mathcal{U} & & \\
\end{array}
\]

where \(\mathcal{U} \) “forgets” positivity relations and \(\mathcal{I} \) adds the greatest positivity relations.
Embedding locales into locales-with-positivity

\(\text{Loc} = \) category of locales
\(\text{PLoc} = \) category of locales-with-positivity (and morphisms that respect positivity)
 (impredicative version of \(\text{PTop} \), category of positive topologies).

By definition of morphism that respect positivity:

\[
\text{an arrow } (L, \Phi) \rightarrow ((L', \text{SupLat}(L', \Omega))) \text{ in } \text{PLoc}
\]

\[
\text{is equivalent to}
\]

\[
\text{an arrow } L \rightarrow L' \text{ in } \text{Loc}.
\]

\[
\text{Loc} \xrightarrow{I} \xleftarrow{U} \text{PLoc}
\]

where \(U \) “forgets” positivity relations and \(I \) adds the greatest positivity relations.

\(\text{Loc} \) is equivalent to a \textbf{reflective} subcategory of \(\text{PLoc} \).
Points of a positive locale

1 = terminal object of PLoc = terminal locale + greatest positivity

\[
\begin{align*}
\text{Points}(L, \Phi) &= \text{PLoc}(1, (L, \Phi)) \\
&= \text{Frame}(L, \Omega) \cap \Phi \\
&= \{ \varphi \in \Phi \mid \varphi \text{ preserves finite meets} \} \\
&= \text{Points}(L) \cap \Phi \\
&\text{(with some abuse of notation)}
\end{align*}
\]

Idea: a positivity is a way for selecting points.

Note that Points(L) = Points(L, \Phi_{max}).
The positivity relation induced by a sub-locale

If \(M \hookrightarrow L \) is a sub-locale, then

\[
\text{SupLat}(M, \Omega)
\]

is a positivity relation on \(L \) and

\[
\text{Points}(L, \text{SupLat}(M, \Omega)) = \text{Points}(L) \cap \text{SupLat}(M, \Omega) = \text{Points}(M).
\]

So there are two ways of dealing with a (sober) sub-space:

1. either define a sublocale
2. or use a positivity relation.

[CLASS: they are the same.]
The adjunction between \textbf{Top} and \textbf{PLoc}

Let \textbf{Top} be the category of topological spaces. There exists an adjunction

\textbf{Top}

\rightarrow

\textbf{PLoc}

$X \mapsto (\Omega X, \ltimes X)$

$\text{Points}(L, \Phi) \leftrightarrow (L, \Phi)$

[Recall: $\ltimes X$ corresponds to all closed subsets of X (in the sense of adherence points).]
The adjunction between \textbf{Top} and \textbf{PLoc}

Let \textbf{Top} be the category of topological spaces. There exists an adjunction

\[
\begin{array}{ccc}
\text{Top} & \xrightarrow{\Omega} & \text{PLoc} \\
X & \mapsto & (\Omega X, \star_X) \\
\text{Points}(L, \Phi) & \leftrightarrow & (L, \Phi)
\end{array}
\]

[Recall: \(\star_X\) corresponds to all closed subsets of \(X\) (in the sense of adherence points).]

Constructively this is NOT an extension of the usual adjunction between \textbf{Top} and \textbf{Loc} because

\[
\begin{array}{ccc}
\text{Top} & \xrightarrow{\Omega} & \text{Loc} \\
\text{Points} & \xleftarrow{U} & \text{PLoc}
\end{array}
\]

Their composition is not an adjunction!
Two notions of sobriety
for a topological space X

points $= \text{Points}(\Omega X, \times_{\text{max}}) = \text{Points}(\Omega X)$

“strong” points $= \text{Points}(\Omega X, \times_X) = \text{Points}(\Omega X) \cap \times_X$

α is “strong” if for all $a \in \alpha$, there exists $p \in X$ s.t. $a \in Np \subseteq \alpha$.

sober $X = \text{Points}(\Omega X, \times_{\text{max}})$

weakly sober $X = \text{Points}(\Omega X, \times_X)$
Two notions of sobriety
for a topological space X

points $= \text{Points}(\Omega X, \sqcap_{\text{max}}) = \text{Points}(\Omega X)$

“strong” points $= \text{Points}(\Omega X, \sqcap_X) = \text{Points}(\Omega X) \cap \sqcap_X$

α is “strong” if for all $a \in \alpha$, there exists $p \in X$ s.t. $a \in Np \subseteq \alpha$.

sober $X = \text{Points}(\Omega X, \sqcap_{\text{max}})$

weakly sober $X = \text{Points}(\Omega X, \sqcap_X)$

If X is T_2, then X is weakly sober.

On the contrary, if “$T_2 \Rightarrow \text{sober}$” were true, then LPO would hold.

Fourman & Scott, *Sheaves and Logic*, in *Applications of sheaves*, LNM 753 (1979)

Positivity relations on suplattices

The notion of a positivity relation makes sense also for the category SupLat of suplattices.

\[
\text{basic topology} = \text{suplattice } L + \text{ positivity } \Phi \hookrightarrow \text{SupLat}(L, \Omega)
\]

As before, every suplattice L can be identified with the basic topology (L, Φ_{max}).
Conclusions and Future work

Summing up: every locale L can be equipped with several positivity relations each of which corresponds to a constraint on points

1. every sublocale $M \hookrightarrow L$ gives the positivity $\text{SupLat}(M, \Omega)$;
2. every localic suplattice $X \hookrightarrow \mathcal{P}L$ gives the positivity $\text{Points}(X)$;
3. classically, (1 and) 2 give all possible positivity relations on L;
4. constructively, positivity relations could be more expressive than 1 and 2.

Work must go on!

Is 4 above “really” more expressive than 1 and 2? (What kind of restrictions on points can be obtained “only” by means of a positivity relation and not as a sublocale?)

Does the category PLoc (of locales with positivity relations) satisfy the same/more/less categorical properties than Loc?

...
Conclusions and Future work

Summing up: every locale L can be equipped with several positivity relations each of which corresponds to a constraint on points

1. every sublocale $M \hookrightarrow L$ gives the positivity $\text{SupLat}(M, \Omega)$;
2. every localic suplattice $X \hookrightarrow \mathcal{P}L$ gives the positivity $\text{Points}(X)$;
3. classically, (1 and) 2 give all possible positivity relations on L;
4. constructively, positivity relations could be more expressive than 1 and 2.

Work must go on!

- Is 4 above “really” more expressive than 1 and 2?
- (What kind of restrictions on points can be obtained “only” by means of a positivity relation and not as a sublocale?)
- Does the category \mathbf{PLoc} (of locales with positivity relations) satisfy the same/more/less categorical properties than \mathbf{Loc}?
- . . .

References

Thank you!